Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A Novel Clustering-Based Algorithm for Continuous and Non-invasive Cuff-Less Blood Pressure Estimation (2110.06996v2)

Published 13 Oct 2021 in physics.med-ph, cs.AI, cs.LG, and eess.SP

Abstract: Extensive research has been performed on continuous, non-invasive, cuffless blood pressure (BP) measurement using artificial intelligence algorithms. This approach involves extracting certain features from physiological signals like ECG, PPG, ICG, BCG, etc. as independent variables and extracting features from Arterial Blood Pressure (ABP) signals as dependent variables, and then using machine learning algorithms to develop a blood pressure estimation model based on these data. The greatest challenge of this field is the insufficient accuracy of estimation models. This paper proposes a novel blood pressure estimation method with a clustering step for accuracy improvement. The proposed method involves extracting Pulse Transit Time (PTT), PPG Intensity Ratio (PIR), and Heart Rate (HR) features from Electrocardiogram (ECG) and Photoplethysmogram (PPG) signals as the inputs of clustering and regression, extracting Systolic Blood Pressure (SBP) and Diastolic Blood Pressure (DBP) features from ABP signals as dependent variables, and finally developing regression models by applying Gradient Boosting Regression (GBR), Random Forest Regression (RFR), and Multilayer Perceptron Regression (MLP) on each cluster. The method was implemented using the MIMICII dataset with the silhouette criterion used to determine the optimal number of clusters. The results showed that because of the inconsistency, high dispersion, and multi-trend behavior of the extracted features vectors, the accuracy can be significantly improved by running a clustering algorithm and then developing a regression model on each cluster, and finally weighted averaging of the results based on the error of each cluster. When implemented with 5 clusters and GBR, this approach yielded an MAE of 2.56 for SBP estimates and 2.23 for DBP estimates, which were significantly better than the best results without clustering (DBP: 6.27, SBP: 6.36).

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.