Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Language Modelling via Learning to Rank (2110.06961v2)

Published 13 Oct 2021 in cs.CL and cs.LG

Abstract: We consider language modelling (LM) as a multi-label structured prediction task by re-framing training from solely predicting a single ground-truth word to ranking a set of words which could continue a given context. To avoid annotating top-$k$ ranks, we generate them using pre-trained LMs: GPT-2, BERT, and Born-Again models. This leads to a rank-based form of knowledge distillation (KD). We also develop a method using $N$-grams to create a non-probabilistic teacher which generates the ranks without the need of a pre-trained LM. We confirm the hypotheses that we can treat LMing as a ranking task and that we can do so without the use of a pre-trained LM. We show that rank-based KD generally improves perplexity (PPL), often with statistical significance, when compared to Kullback-Leibler-based KD. Surprisingly, given the simplicity of the method, $N$-grams act as competitive teachers and achieve similar performance as using either BERT or a Born-Again model teachers. GPT-2 always acts as the best teacher, though, and using it and a Transformer-XL student on Wiki-02, rank-based KD reduces a cross-entropy baseline from 65.27 to 55.94 and against a KL-based KD of 56.70.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.