Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

NoisyActions2M: A Multimedia Dataset for Video Understanding from Noisy Labels (2110.06827v1)

Published 13 Oct 2021 in cs.MM, cs.CV, and cs.LG

Abstract: Deep learning has shown remarkable progress in a wide range of problems. However, efficient training of such models requires large-scale datasets, and getting annotations for such datasets can be challenging and costly. In this work, we explore the use of user-generated freely available labels from web videos for video understanding. We create a benchmark dataset consisting of around 2 million videos with associated user-generated annotations and other meta information. We utilize the collected dataset for action classification and demonstrate its usefulness with existing small-scale annotated datasets, UCF101 and HMDB51. We study different loss functions and two pretraining strategies, simple and self-supervised learning. We also show how a network pretrained on the proposed dataset can help against video corruption and label noise in downstream datasets. We present this as a benchmark dataset in noisy learning for video understanding. The dataset, code, and trained models will be publicly available for future research.

Citations (3)

Summary

We haven't generated a summary for this paper yet.