Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Exploring Dense Retrieval for Dialogue Response Selection (2110.06612v3)

Published 13 Oct 2021 in cs.CL and cs.AI

Abstract: Recent progress in deep learning has continuously improved the accuracy of dialogue response selection. In particular, sophisticated neural network architectures are leveraged to capture the rich interactions between dialogue context and response candidates. While remarkably effective, these models also bring in a steep increase in computational cost. Consequently, such models can only be used as a re-rank module in practice. In this study, we present a solution to directly select proper responses from a large corpus or even a nonparallel corpus that only consists of unpaired sentences, using a dense retrieval model. To push the limits of dense retrieval, we design an interaction layer upon the dense retrieval models and apply a set of tailor-designed learning strategies. Our model shows superiority over strong baselines on the conventional re-rank evaluation setting, which is remarkable given its efficiency. To verify the effectiveness of our approach in realistic scenarios, we also conduct full-rank evaluation, where the target is to select proper responses from a full candidate pool that may contain millions of candidates and evaluate them fairly through human annotations. Our proposed model notably outperforms pipeline baselines that integrate fast recall and expressive re-rank modules. Human evaluation results show that enlarging the candidate pool with nonparallel corpora improves response quality further.

Citations (15)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.