Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Duality Temporal-channel-frequency Attention Enhanced Speaker Representation Learning (2110.06565v3)

Published 13 Oct 2021 in cs.SD and eess.AS

Abstract: The use of channel-wise attention in CNN based speaker representation networks has achieved remarkable performance in speaker verification (SV). But these approaches do simple averaging on time and frequency feature maps before channel-wise attention learning and ignore the essential mutual interaction among temporal, channel as well as frequency scales. To address this problem, we propose the Duality Temporal-Channel-Frequency (DTCF) attention to re-calibrate the channel-wise features with aggregation of global context on temporal and frequency dimensions. Specifically, the duality attention - time-channel (T-C) attention as well as frequency-channel (F-C) attention - aims to focus on salient regions along the T-C and F-C feature maps that may have more considerable impact on the global context, leading to more discriminative speaker representations. We evaluate the effectiveness of the proposed DTCF attention on the CN-Celeb and VoxCeleb datasets. On the CN-Celeb evaluation set, the EER/minDCF of ResNet34-DTCF are reduced by 0.63%/0.0718 compared with those of ResNet34-SE. On VoxCeleb1-O, VoxCeleb1-E and VoxCeleb1-H evaluation sets, the EER/minDCF of ResNet34-DTCF achieve 0.36%/0.0263, 0.39%/0.0382 and 0.74%/0.0753 reductions compared with those of ResNet34-SE.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.