Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 156 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Dropout Prediction Uncertainty Estimation Using Neuron Activation Strength (2110.06435v3)

Published 13 Oct 2021 in cs.LG

Abstract: Dropout has been commonly used to quantify prediction uncertainty, i.e, the variations of model predictions on a given input example. However, using dropout in practice can be expensive as it requires running dropout inferences many times. In this paper, we study how to estimate dropout prediction uncertainty in a resource-efficient manner. We demonstrate that we can use neuron activation strengths to estimate dropout prediction uncertainty under different dropout settings and on a variety of tasks using three large datasets, MovieLens, Criteo, and EMNIST. Our approach provides an inference-once method to estimate dropout prediction uncertainty as a cheap auxiliary task. We also demonstrate that using activation features from a subset of the neural network layers can be sufficient to achieve uncertainty estimation performance almost comparable to that of using activation features from all layers, thus reducing resources even further for uncertainty estimation.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.