Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

All-neural beamformer for continuous speech separation (2110.06428v1)

Published 13 Oct 2021 in eess.AS and cs.SD

Abstract: Continuous speech separation (CSS) aims to separate overlapping voices from a continuous influx of conversational audio containing an unknown number of utterances spoken by an unknown number of speakers. A common application scenario is transcribing a meeting conversation recorded by a microphone array. Prior studies explored various deep learning models for time-frequency mask estimation, followed by a minimum variance distortionless response (MVDR) filter to improve the automatic speech recognition (ASR) accuracy. The performance of these methods is fundamentally upper-bounded by MVDR's spatial selectivity. Recently, the all deep learning MVDR (ADL-MVDR) model was proposed for neural beamforming and demonstrated superior performance in a target speech extraction task using pre-segmented input. In this paper, we further adapt ADL-MVDR to the CSS task with several enhancements to enable end-to-end neural beamforming. The proposed system achieves significant word error rate reduction over a baseline spectral masking system on the LibriCSS dataset. Moreover, the proposed neural beamformer is shown to be comparable to a state-of-the-art MVDR-based system in real meeting transcription tasks, including AMI, while showing potentials to further simplify the runtime implementation and reduce the system latency with frame-wise processing.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.