Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

GRAPE for Fast and Scalable Graph Processing and random walk-based Embedding (2110.06196v3)

Published 12 Oct 2021 in cs.LG and cs.DC

Abstract: Graph Representation Learning (GRL) methods opened new avenues for addressing complex, real-world problems represented by graphs. However, many graphs used in these applications comprise millions of nodes and billions of edges and are beyond the capabilities of current methods and software implementations. We present GRAPE, a software resource for graph processing and embedding that can scale with big graphs by using specialized and smart data structures, algorithms, and a fast parallel implementation of random walk-based methods. Compared with state-of-the-art software resources, GRAPE shows an improvement of orders of magnitude in empirical space and time complexity, as well as a competitive edge and node label prediction performance. GRAPE comprises about 1.7 million well-documented lines of Python and Rust code and provides 69 node embedding methods, 25 inference models, a collection of efficient graph processing utilities and over 80,000 graphs from the literature and other sources. Standardized interfaces allow seamless integration of third-party libraries, while ready-to-use and modular pipelines permit an easy-to-use evaluation of GRL methods, therefore also positioning GRAPE as a software resource to perform a fair comparison between methods and libraries for graph processing and embedding.

Citations (20)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.