Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Multi-channel Narrow-band Deep Speech Separation with Full-band Permutation Invariant Training (2110.05966v2)

Published 12 Oct 2021 in cs.SD and eess.AS

Abstract: This paper addresses the problem of multi-channel multi-speech separation based on deep learning techniques. In the short time Fourier transform domain, we propose an end-to-end narrow-band network that directly takes as input the multi-channel mixture signals of one frequency, and outputs the separated signals of this frequency. In narrow-band, the spatial information (or inter-channel difference) can well discriminate between speakers at different positions. This information is intensively used in many narrow-band speech separation methods, such as beamforming and clustering of spatial vectors. The proposed network is trained to learn a rule to automatically exploit this information and perform speech separation. Such a rule should be valid for any frequency, thence the network is shared by all frequencies. In addition, a full-band permutation invariant training criterion is proposed to solve the frequency permutation problem encountered by most narrow-band methods. Experiments show that, by focusing on deeply learning the narrow-band information, the proposed method outperforms the oracle beamforming method and the state-of-the-art deep learning based method.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube