Multi-channel Narrow-band Deep Speech Separation with Full-band Permutation Invariant Training (2110.05966v2)
Abstract: This paper addresses the problem of multi-channel multi-speech separation based on deep learning techniques. In the short time Fourier transform domain, we propose an end-to-end narrow-band network that directly takes as input the multi-channel mixture signals of one frequency, and outputs the separated signals of this frequency. In narrow-band, the spatial information (or inter-channel difference) can well discriminate between speakers at different positions. This information is intensively used in many narrow-band speech separation methods, such as beamforming and clustering of spatial vectors. The proposed network is trained to learn a rule to automatically exploit this information and perform speech separation. Such a rule should be valid for any frequency, thence the network is shared by all frequencies. In addition, a full-band permutation invariant training criterion is proposed to solve the frequency permutation problem encountered by most narrow-band methods. Experiments show that, by focusing on deeply learning the narrow-band information, the proposed method outperforms the oracle beamforming method and the state-of-the-art deep learning based method.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.