Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Across-Task Neural Architecture Search via Meta Learning (2110.05842v1)

Published 12 Oct 2021 in cs.LG

Abstract: Adequate labeled data and expensive compute resources are the prerequisites for the success of neural architecture search(NAS). It is challenging to apply NAS in meta-learning scenarios with limited compute resources and data. In this paper, an across-task neural architecture search (AT-NAS) is proposed to address the problem through combining gradient-based meta-learning with EA-based NAS to learn over the distribution of tasks. The supernet is learned over an entire set of tasks by meta-learning its weights. Architecture encodes of subnets sampled from the supernet are iteratively adapted by evolutionary algorithms while simultaneously searching for a task-sensitive meta-network. Searched meta-network can be adapted to a novel task via a few learning steps and only costs a little search time. Empirical results show that AT-NAS surpasses the related approaches on few-shot classification accuracy. The performance of AT-NAS on classification benchmarks is comparable to that of models searched from scratch, by adapting the architecture in less than an hour from a 5-GPU-day pretrained meta-network.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.