Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Music Sentiment Transfer (2110.05765v1)

Published 12 Oct 2021 in cs.SD, cs.LG, cs.MM, and eess.AS

Abstract: Music sentiment transfer is a completely novel task. Sentiment transfer is a natural evolution of the heavily-studied style transfer task, as sentiment transfer is rooted in applying the sentiment of a source to be the new sentiment for a target piece of media; yet compared to style transfer, sentiment transfer has been only scantily studied on images. Music sentiment transfer attempts to apply the high level objective of sentiment transfer to the domain of music. We propose CycleGAN to bridge disparate domains. In order to use the network, we choose to use symbolic, MIDI, data as the music format. Through the use of a cycle consistency loss, we are able to create one-to-one mappings that preserve the content and realism of the source data. Results and literature suggest that the task of music sentiment transfer is more difficult than image sentiment transfer because of the temporal characteristics of music and lack of existing datasets.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.