Papers
Topics
Authors
Recent
2000 character limit reached

Query-Reward Tradeoffs in Multi-Armed Bandits

Published 12 Oct 2021 in cs.LG | (2110.05724v2)

Abstract: We consider a stochastic multi-armed bandit setting where reward must be actively queried for it to be observed. We provide tight lower and upper problem-dependent guarantees on both the regret and the number of queries. Interestingly, we prove that there is a fundamental difference between problems with a unique and multiple optimal arms, unlike in the standard multi-armed bandit problem. We also present a new, simple, UCB-style sampling concept, and show that it naturally adapts to the number of optimal arms and achieves tight regret and querying bounds.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.