Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 441 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Convergence and stability of the semi-tamed Milstein method for commutative stochastic differential equations with non-globally Lipschitz continuous coefficients (2110.05716v1)

Published 12 Oct 2021 in math.NA and cs.NA

Abstract: A new explicit stochastic scheme of order 1 is proposed for solving commutative stochastic differential equations (SDEs) with non-globally Lipschitz continuous coefficients. The proposed method is a semi-tamed version of Milstein scheme to solve SDEs with the drift coefficient consisting of non-Lipschitz continuous term and globally Lipschitz continuous term. It is easily implementable and achieves higher strong convergence order. A stability criterion for this method is derived, which shows that the stability condition of the numerical methods and that of the solved equations keep uniform. Compared with some widely used numerical schemes, the proposed method has better performance in inheriting the mean square stability of the exact solution of SDEs. Numerical experiments are given to illustrate the obtained convergence and stability properties.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.