Papers
Topics
Authors
Recent
2000 character limit reached

Hiding Images into Images with Real-world Robustness (2110.05689v1)

Published 12 Oct 2021 in cs.CV and cs.AI

Abstract: The existing image embedding networks are basically vulnerable to malicious attacks such as JPEG compression and noise adding, not applicable for real-world copyright protection tasks. To solve this problem, we introduce a generative deep network based method for hiding images into images while assuring high-quality extraction from the destructive synthesized images. An embedding network is sequentially concatenated with an attack layer, a decoupling network and an image extraction network. The addition of decoupling network learns to extract the embedded watermark from the attacked image. We also pinpoint the weaknesses of the adversarial training for robustness in previous works and build our improved real-world attack simulator. Experimental results demonstrate the superiority of the proposed method against typical digital attacks by a large margin, as well as the performance boost of the recovered images with the aid of progressive recovery strategy. Besides, we are the first to robustly hide three secret images.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.