Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 37 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 11 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 30 tok/s Pro
2000 character limit reached

SRU++: Pioneering Fast Recurrence with Attention for Speech Recognition (2110.05571v1)

Published 11 Oct 2021 in eess.AS and cs.CL

Abstract: The Transformer architecture has been well adopted as a dominant architecture in most sequence transduction tasks including automatic speech recognition (ASR), since its attention mechanism excels in capturing long-range dependencies. While models built solely upon attention can be better parallelized than regular RNN, a novel network architecture, SRU++, was recently proposed. By combining the fast recurrence and attention mechanism, SRU++ exhibits strong capability in sequence modeling and achieves near-state-of-the-art results in various LLMing and machine translation tasks with improved compute efficiency. In this work, we present the advantages of applying SRU++ in ASR tasks by comparing with Conformer across multiple ASR benchmarks and study how the benefits can be generalized to long-form speech inputs. On the popular LibriSpeech benchmark, our SRU++ model achieves 2.0% / 4.7% WER on test-clean / test-other, showing competitive performances compared with the state-of-the-art Conformer encoder under the same set-up. Specifically, SRU++ can surpass Conformer on long-form speech input with a large margin, based on our analysis.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.