Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Breaking the Softmax Bottleneck for Sequential Recommender Systems with Dropout and Decoupling (2110.05409v1)

Published 11 Oct 2021 in cs.LG and cs.IR

Abstract: The Softmax bottleneck was first identified in LLMing as a theoretical limit on the expressivity of Softmax-based models. Being one of the most widely-used methods to output probability, Softmax-based models have found a wide range of applications, including session-based recommender systems (SBRSs). Softmax-based models consist of a Softmax function on top of a final linear layer. The bottleneck has been shown to be caused by rank deficiency in the final linear layer due to its connection with matrix factorization. In this paper, we show that there are more aspects to the Softmax bottleneck in SBRSs. Contrary to common beliefs, overfitting does happen in the final linear layer, while it is often associated with complex networks. Furthermore, we identified that the common technique of sharing item embeddings among session sequences and the candidate pool creates a tight-coupling that also contributes to the bottleneck. We propose a simple yet effective method, Dropout and Decoupling (D&D), to alleviate these problems. Our experiments show that our method significantly improves the accuracy of a variety of Softmax-based SBRS algorithms. When compared to other computationally expensive methods, such as MLP and MoS (Mixture of Softmaxes), our method performs on par with and at times even better than those methods, while keeping the same time complexity as Softmax-based models.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)