Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Quantitative Equality in Substructural Logic via Lipschitz Doctrines (2110.05388v5)

Published 11 Oct 2021 in cs.LO and math.CT

Abstract: Substructural logics naturally support a quantitative interpretation of formulas, as they are seen as consumable resources. Distances are the quantitative counterpart of equivalence relations: they measure how much two objects are similar, rather than just saying whether they are equivalent or not. Hence, they provide the natural choice for modelling equality in a substructural setting. In this paper, we develop this idea, using the categorical language of Lawvere's doctrines. We work in a minimal fragment of Linear Logic enriched by graded modalities, which are needed to write a resource sensitive substitution rule for equality, enabling its quantitative interpretation as a distance. We introduce both a deductive calculus and the notion of Lipschitz doctrine to give it a sound and complete categorical semantics. The study of 2-categorical properties of Lipschitz doctrines provides us with a universal construction, which generates examples based for instance on metric spaces and quantitative realisability. Finally, we show how to smoothly extend our results to richer substructural logics, up to full Linear Logic with quantifiers.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.