Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Sparse recovery of elliptic solvers from matrix-vector products (2110.05351v4)

Published 11 Oct 2021 in math.NA and cs.NA

Abstract: In this work, we show that solvers of elliptic boundary value problems in $d$ dimensions can be approximated to accuracy $\epsilon$ from only $\mathcal{O}\left(\log(N)\log{d}(N / \epsilon)\right)$ matrix-vector products with carefully chosen vectors (right-hand sides). The solver is only accessed as a black box, and the underlying operator may be unknown and of an arbitrarily high order. Our algorithm (1) has complexity $\mathcal{O}\left(N\log2(N)\log{2d}(N / \epsilon)\right)$ and represents the solution operator as a sparse Cholesky factorization with $\mathcal{O}\left(N\log(N)\log{d}(N / \epsilon)\right)$ nonzero entries, (2) allows for embarrassingly parallel evaluation of the solution operator and the computation of its log-determinant, (3) allows for $\mathcal{O}\left(\log(N)\log{d}(N / \epsilon)\right)$ complexity computation of individual entries of the matrix representation of the solver that, in turn, enables its recompression to an $\mathcal{O}\left(N\log{d}(N / \epsilon)\right)$ complexity representation. As a byproduct, our compression scheme produces a homogenized solution operator with near-optimal approximation accuracy. By polynomial approximation, we can also approximate the continuous Green's function (in operator and Hilbert-Schmidt norm) to accuracy $\epsilon$ from $\mathcal{O}\left(\log{1 + d}\left(\epsilon{-1}\right)\right)$ solutions of the PDE. We include rigorous proofs of these results. To the best of our knowledge, our algorithm achieves the best known trade-off between accuracy $\epsilon$ and the number of required matrix-vector products.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube