Papers
Topics
Authors
Recent
2000 character limit reached

On $q$-ary shortened-$1$-perfect-like codes (2110.05256v2)

Published 11 Oct 2021 in math.CO, cs.DM, cs.IT, and math.IT

Abstract: We study codes with parameters of $q$-ary shortened Hamming codes, i.e., $(n=(qm-q)/(q-1), q{n-m}, 3)_q$. Firstly, we prove the fact mentioned in 1998 by Brouwer et al. that such codes are optimal, generalizing it to a bound for multifold packings of radius-$1$ balls, with a corollary for multiple coverings. In particular, we show that the punctured Hamming code is an optimal $q$-fold packing with minimum distance $2$. Secondly, for every admissible length starting from $n=20$, we show the existence of $4$-ary codes with parameters of shortened $1$-perfect codes that cannot be obtained by shortening a $1$-perfect code. Keywords: Hamming graph, multifold packings, multiple coverings, perfect codes.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.