On $q$-ary shortened-$1$-perfect-like codes (2110.05256v2)
Abstract: We study codes with parameters of $q$-ary shortened Hamming codes, i.e., $(n=(qm-q)/(q-1), q{n-m}, 3)_q$. Firstly, we prove the fact mentioned in 1998 by Brouwer et al. that such codes are optimal, generalizing it to a bound for multifold packings of radius-$1$ balls, with a corollary for multiple coverings. In particular, we show that the punctured Hamming code is an optimal $q$-fold packing with minimum distance $2$. Secondly, for every admissible length starting from $n=20$, we show the existence of $4$-ary codes with parameters of shortened $1$-perfect codes that cannot be obtained by shortening a $1$-perfect code. Keywords: Hamming graph, multifold packings, multiple coverings, perfect codes.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.