Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

K-Wav2vec 2.0: Automatic Speech Recognition based on Joint Decoding of Graphemes and Syllables (2110.05172v1)

Published 11 Oct 2021 in cs.CL

Abstract: Wav2vec 2.0 is an end-to-end framework of self-supervised learning for speech representation that is successful in automatic speech recognition (ASR), but most of the work on the topic has been developed with a single language: English. Therefore, it is unclear whether the self-supervised framework is effective in recognizing other languages with different writing systems, such as Korean which uses the Hangul having a unique writing system. In this paper, we present K-Wav2Vec 2.0, which is a modified version of Wav2vec 2.0 designed for Korean automatic speech recognition by exploring and optimizing various factors of the original Wav2vec 2.0. In fine-tuning, we propose a multi-task hierarchical architecture to reflect the Korean writing structure. Moreover, a joint decoder is applied to alleviate the problem of words existing outside of the vocabulary. In pre-training, we attempted the cross-lingual transfer of the pre-trained model by further pre-training the English Wav2vec 2.0 on a Korean dataset, considering limited resources. Our experimental results demonstrate that the proposed method yields the best performance on both Korean ASR datasets: Ksponspeech (a large-scale Korean speech corpus) and Clovacall (a call-based dialog corpus). Further pre-training is also effective in language adaptation, leading to large improvements without additional data.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube