Papers
Topics
Authors
Recent
2000 character limit reached

Multiple Object Trackers in OpenCV: A Benchmark (2110.05102v1)

Published 11 Oct 2021 in cs.CV, cs.AI, and cs.LG

Abstract: Object tracking is one of the most important and fundamental disciplines of Computer Vision. Many Computer Vision applications require specific object tracking capabilities, including autonomous and smart vehicles, video surveillance, medical treatments, and many others. The OpenCV as one of the most popular libraries for Computer Vision includes several hundred Computer Vision algorithms. Object tracking tasks in the library can be roughly clustered in single and multiple object trackers. The library is widely used for real-time applications, but there are a lot of unanswered questions such as when to use a specific tracker, how to evaluate its performance, and for what kind of objects will the tracker yield the best results? In this paper, we evaluate 7 trackers implemented in OpenCV against the MOT20 dataset. The results are shown based on Multiple Object Tracking Accuracy (MOTA) and Multiple Object Tracking Precision (MOTP) metrics.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.