Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Multiple Object Trackers in OpenCV: A Benchmark (2110.05102v1)

Published 11 Oct 2021 in cs.CV, cs.AI, and cs.LG

Abstract: Object tracking is one of the most important and fundamental disciplines of Computer Vision. Many Computer Vision applications require specific object tracking capabilities, including autonomous and smart vehicles, video surveillance, medical treatments, and many others. The OpenCV as one of the most popular libraries for Computer Vision includes several hundred Computer Vision algorithms. Object tracking tasks in the library can be roughly clustered in single and multiple object trackers. The library is widely used for real-time applications, but there are a lot of unanswered questions such as when to use a specific tracker, how to evaluate its performance, and for what kind of objects will the tracker yield the best results? In this paper, we evaluate 7 trackers implemented in OpenCV against the MOT20 dataset. The results are shown based on Multiple Object Tracking Accuracy (MOTA) and Multiple Object Tracking Precision (MOTP) metrics.

Citations (17)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.