Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Can Stochastic Gradient Langevin Dynamics Provide Differential Privacy for Deep Learning? (2110.05057v5)

Published 11 Oct 2021 in cs.LG and cs.CR

Abstract: Bayesian learning via Stochastic Gradient Langevin Dynamics (SGLD) has been suggested for differentially private learning. While previous research provides differential privacy bounds for SGLD at the initial steps of the algorithm or when close to convergence, the question of what differential privacy guarantees can be made in between remains unanswered. This interim region is of great importance, especially for Bayesian neural networks, as it is hard to guarantee convergence to the posterior. This paper shows that using SGLD might result in unbounded privacy loss for this interim region, even when sampling from the posterior is as differentially private as desired.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)