Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Koopman Operator Based Modeling and Control of Rigid Body Motion Represented by Dual Quaternions (2110.04967v2)

Published 11 Oct 2021 in eess.SY and cs.SY

Abstract: In this paper, we systematically derive a finite set of Koopman based observables to construct a lifted linear state space model that describes the rigid body dynamics based on the dual quaternion representation. In general, the Koopman operator is a linear infinite dimensional operator, which means that the derived linear state space model of the rigid body dynamics will be infinite-dimensional, which is not suitable for modeling and control design purposes. Recently, finite approximations of the operator computed by means of methods like the Extended Dynamic Mode Decomposition (EDMD) have shown promising results for different classes of problems. However, without using an appropriate set of observables in the EDMD approach, there can be no guarantees that the computed approximation of the nonlinear dynamics is sufficiently accurate. The major challenge in using the Koopman operator for constructing a linear state space model is the choice of observables. State-of-the-art methods in the field compute the approximations of the observables by using neural networks, standard radial basis functions (RBFs), polynomials or heuristic approximations of these functions. However, these observables might not providea sufficiently accurate approximation or representation of the dynamics. In contrast, we first show the pointwise convergence of the derived observable functions to zero, thereby allowing us to choose a finite set of these observables. Next, we use the derived observables in EDMD to compute the lifted linear state and input matrices for the rigid body dynamics. Finally, we show that an LQR type (linear) controller, which is designed based on the truncated linear state space model, can steer the rigid body to a desired state while its performance is commensurate with that of a nonlinear controller. The efficacy of our approach is demonstrated through numerical simulations.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.