Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Towards Demystifying Representation Learning with Non-contrastive Self-supervision (2110.04947v2)

Published 11 Oct 2021 in cs.LG and stat.ML

Abstract: Non-contrastive methods of self-supervised learning (such as BYOL and SimSiam) learn representations by minimizing the distance between two views of the same image. These approaches have achieved remarkable performance in practice, but the theoretical understanding lags behind. Tian et al. 2021 explained why the representation does not collapse to zero, however, how the feature is learned still remains mysterious. In our work, we prove in a linear network, non-contrastive methods learn a desirable projection matrix and also reduce the sample complexity on downstream tasks. Our analysis suggests that weight decay acts as an implicit threshold that discards the features with high variance under data augmentations, and keeps the features with low variance. Inspired by our theory, we design a simpler and more computationally efficient algorithm DirectCopy by removing the eigen-decomposition step in the original DirectPred algorithm in Tian et al. 2021. Our experiments show that DirectCopy rivals or even outperforms DirectPred on STL-10, CIFAR-10, CIFAR-100, and ImageNet.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.