Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Finding Second-Order Stationary Points in Nonconvex-Strongly-Concave Minimax Optimization (2110.04814v3)

Published 10 Oct 2021 in math.OC and cs.LG

Abstract: We study the smooth minimax optimization problem $\min_{\bf x}\max_{\bf y} f({\bf x},{\bf y})$, where $f$ is $\ell$-smooth, strongly-concave in ${\bf y}$ but possibly nonconvex in ${\bf x}$. Most of existing works focus on finding the first-order stationary points of the function $f({\bf x},{\bf y})$ or its primal function $P({\bf x})\triangleq \max_{\bf y} f({\bf x},{\bf y})$, but few of them focus on achieving second-order stationary points. In this paper, we propose a novel approach for minimax optimization, called Minimax Cubic Newton (MCN), which could find an $\big(\varepsilon,\kappa{1.5}\sqrt{\rho\varepsilon}\,\big)$-second-order stationary point of $P({\bf x})$ with calling ${\mathcal O}\big(\kappa{1.5}\sqrt{\rho}\varepsilon{-1.5}\big)$ times of second-order oracles and $\tilde{\mathcal O}\big(\kappa{2}\sqrt{\rho}\varepsilon{-1.5}\big)$ times of first-order oracles, where $\kappa$ is the condition number and $\rho$ is the Lipschitz continuous constant for the Hessian of $f({\bf x},{\bf y})$. In addition, we propose an inexact variant of MCN for high-dimensional problems to avoid calling expensive second-order oracles. Instead, our method solves the cubic sub-problem inexactly via gradient descent and matrix Chebyshev expansion. This strategy still obtains the desired approximate second-order stationary point with high probability but only requires $\tilde{\mathcal O}\big(\kappa{1.5}\ell\varepsilon{-2}\big)$ Hessian-vector oracle calls and $\tilde{\mathcal O}\big(\kappa{2}\sqrt{\rho}\varepsilon{-1.5}\big)$ first-order oracle calls. To the best of our knowledge, this is the first work that considers the non-asymptotic convergence behavior of finding second-order stationary points for minimax problems without the convex-concave assumptions.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.