Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Stepwise-Refining Speech Separation Network via Fine-Grained Encoding in High-order Latent Domain (2110.04791v2)

Published 10 Oct 2021 in eess.AS, cs.LG, and cs.SD

Abstract: The crux of single-channel speech separation is how to encode the mixture of signals into such a latent embedding space that the signals from different speakers can be precisely separated. Existing methods for speech separation either transform the speech signals into frequency domain to perform separation or seek to learn a separable embedding space by constructing a latent domain based on convolutional filters. While the latter type of methods learning an embedding space achieves substantial improvement for speech separation, we argue that the embedding space defined by only one latent domain does not suffice to provide a thoroughly separable encoding space for speech separation. In this paper, we propose the Stepwise-Refining Speech Separation Network (SRSSN), which follows a coarse-to-fine separation framework. It first learns a 1-order latent domain to define an encoding space and thereby performs a rough separation in the coarse phase. Then the proposed SRSSN learns a new latent domain along each basis function of the existing latent domain to obtain a high-order latent domain in the refining phase, which enables our model to perform a refining separation to achieve a more precise speech separation. We demonstrate the effectiveness of our SRSSN by conducting extensive experiments, including speech separation in a clean (noise-free) setting on WSJ0-2/3mix datasets as well as in noisy/reverberant settings on WHAM!/WHAMR! datasets. Furthermore, we also perform experiments of speech recognition on separated speech signals by our model to evaluate the performance of speech separation indirectly.

Citations (10)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.