Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Fitting large mixture models using stochastic component selection (2110.04776v1)

Published 10 Oct 2021 in cs.LG and stat.ML

Abstract: Traditional methods for unsupervised learning of finite mixture models require to evaluate the likelihood of all components of the mixture. This becomes computationally prohibitive when the number of components is large, as it is, for example, in the sum-product (transform) networks. Therefore, we propose to apply a combination of the expectation maximization and the Metropolis-Hastings algorithm to evaluate only a small number of, stochastically sampled, components, thus substantially reducing the computational cost. The Markov chain of component assignments is sequentially generated across the algorithm's iterations, having a non-stationary target distribution whose parameters vary via a gradient-descent scheme. We put emphasis on generality of our method, equipping it with the ability to train both shallow and deep mixture models which involve complex, and possibly nonlinear, transformations. The performance of our method is illustrated in a variety of synthetic and real-data contexts, considering deep models, such as mixtures of normalizing flows and sum-product (transform) networks.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.