Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Multi-task Learning with Metadata for Music Mood Classification (2110.04765v1)

Published 10 Oct 2021 in cs.SD, cs.LG, and eess.AS

Abstract: Mood recognition is an important problem in music informatics and has key applications in music discovery and recommendation. These applications have become even more relevant with the rise of music streaming. Our work investigates the research question of whether we can leverage audio metadata such as artist and year, which is readily available, to improve the performance of mood classification models. To this end, we propose a multi-task learning approach in which a shared model is simultaneously trained for mood and metadata prediction tasks with the goal to learn richer representations. Experimentally, we demonstrate that applying our technique on the existing state-of-the-art convolutional neural networks for mood classification improves their performances consistently. We conduct experiments on multiple datasets and report that our approach can lead to improvements in the average precision metric by up to 8.7 points.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.