Papers
Topics
Authors
Recent
2000 character limit reached

Universal Adversarial Attacks on Neural Networks for Power Allocation in a Massive MIMO System (2110.04731v1)

Published 10 Oct 2021 in cs.IT, cs.CR, cs.LG, and math.IT

Abstract: Deep learning (DL) architectures have been successfully used in many applications including wireless systems. However, they have been shown to be susceptible to adversarial attacks. We analyze DL-based models for a regression problem in the context of downlink power allocation in massive multiple-input-multiple-output systems and propose universal adversarial perturbation (UAP)-crafting methods as white-box and black-box attacks. We benchmark the UAP performance of white-box and black-box attacks for the considered application and show that the adversarial success rate can achieve up to 60% and 40%, respectively. The proposed UAP-based attacks make a more practical and realistic approach as compared to classical white-box attacks.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.