Papers
Topics
Authors
Recent
2000 character limit reached

Fine-grained Identity Preserving Landmark Synthesis for Face Reenactment (2110.04708v2)

Published 10 Oct 2021 in cs.CV

Abstract: Recent face reenactment works are limited by the coarse reference landmarks, leading to unsatisfactory identity preserving performance due to the distribution gap between the manipulated landmarks and those sampled from a real person. To address this issue, we propose a fine-grained identity-preserving landmark-guided face reenactment approach. The proposed method has two novelties. First, a landmark synthesis network which is designed to generate fine-grained landmark faces with more details. The network refines the manipulated landmarks and generates a smooth and gradually changing face landmark sequence with good identity preserving ability. Second, several novel loss functions including synthesized face identity preserving loss, foreground/background mask loss as well as boundary loss are designed, which aims at synthesizing clear and sharp high-quality faces. Experiments are conducted on our self-collected BeautySelfie and the public VoxCeleb1 datasets. The presented qualitative and quantitative results show that our method can reenact fine-grained higher quality faces with good ID-preserved appearance details, fewer artifacts and clearer boundaries than state-of-the-art works. Code will be released for reproduction.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.