Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 74 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Disentangled Sequence to Sequence Learning for Compositional Generalization (2110.04655v2)

Published 9 Oct 2021 in cs.CL

Abstract: There is mounting evidence that existing neural network models, in particular the very popular sequence-to-sequence architecture, struggle to systematically generalize to unseen compositions of seen components. We demonstrate that one of the reasons hindering compositional generalization relates to representations being entangled. We propose an extension to sequence-to-sequence models which encourages disentanglement by adaptively re-encoding (at each time step) the source input. Specifically, we condition the source representations on the newly decoded target context which makes it easier for the encoder to exploit specialized information for each prediction rather than capturing it all in a single forward pass. Experimental results on semantic parsing and machine translation empirically show that our proposal delivers more disentangled representations and better generalization.

Citations (38)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube