Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Unsupervised Pose-Aware Part Decomposition for 3D Articulated Objects (2110.04411v1)

Published 8 Oct 2021 in cs.CV

Abstract: Articulated objects exist widely in the real world. However, previous 3D generative methods for unsupervised part decomposition are unsuitable for such objects, because they assume a spatially fixed part location, resulting in inconsistent part parsing. In this paper, we propose PPD (unsupervised Pose-aware Part Decomposition) to address a novel setting that explicitly targets man-made articulated objects with mechanical joints, considering the part poses. We show that category-common prior learning for both part shapes and poses facilitates the unsupervised learning of (1) part decomposition with non-primitive-based implicit representation, and (2) part pose as joint parameters under single-frame shape supervision. We evaluate our method on synthetic and real datasets, and we show that it outperforms previous works in consistent part parsing of the articulated objects based on comparable part pose estimation performance to the supervised baseline.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.