Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Global Explainability of BERT-Based Evaluation Metrics by Disentangling along Linguistic Factors (2110.04399v2)

Published 8 Oct 2021 in cs.CL

Abstract: Evaluation metrics are a key ingredient for progress of text generation systems. In recent years, several BERT-based evaluation metrics have been proposed (including BERTScore, MoverScore, BLEURT, etc.) which correlate much better with human assessment of text generation quality than BLEU or ROUGE, invented two decades ago. However, little is known what these metrics, which are based on black-box LLM representations, actually capture (it is typically assumed they model semantic similarity). In this work, we use a simple regression based global explainability technique to disentangle metric scores along linguistic factors, including semantics, syntax, morphology, and lexical overlap. We show that the different metrics capture all aspects to some degree, but that they are all substantially sensitive to lexical overlap, just like BLEU and ROUGE. This exposes limitations of these novelly proposed metrics, which we also highlight in an adversarial test scenario.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.