Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Towards Sample-efficient Apprenticeship Learning from Suboptimal Demonstration (2110.04347v1)

Published 8 Oct 2021 in cs.RO and cs.LG

Abstract: Learning from Demonstration (LfD) seeks to democratize robotics by enabling non-roboticist end-users to teach robots to perform novel tasks by providing demonstrations. However, as demonstrators are typically non-experts, modern LfD techniques are unable to produce policies much better than the suboptimal demonstration. A previously-proposed framework, SSRR, has shown success in learning from suboptimal demonstration but relies on noise-injected trajectories to infer an idealized reward function. A random approach such as noise-injection to generate trajectories has two key drawbacks: 1) Performance degradation could be random depending on whether the noise is applied to vital states and 2) Noise-injection generated trajectories may have limited suboptimality and therefore will not accurately represent the whole scope of suboptimality. We present Systematic Self-Supervised Reward Regression, S3RR, to investigate systematic alternatives for trajectory degradation. We carry out empirical evaluations and find S3RR can learn comparable or better reward correlation with ground-truth against a state-of-the-art learning from suboptimal demonstration framework.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.