Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Extragradient Method: $O(1/K)$ Last-Iterate Convergence for Monotone Variational Inequalities and Connections With Cocoercivity (2110.04261v2)

Published 8 Oct 2021 in math.OC and cs.LG

Abstract: Extragradient method (EG) (Korpelevich, 1976) is one of the most popular methods for solving saddle point and variational inequalities problems (VIP). Despite its long history and significant attention in the optimization community, there remain important open questions about convergence of EG. In this paper, we resolve one of such questions and derive the first last-iterate $O(1/K)$ convergence rate for EG for monotone and Lipschitz VIP without any additional assumptions on the operator unlike the only known result of this type (Golowich et al., 2020) that relies on the Lipschitzness of the Jacobian of the operator. The rate is given in terms of reducing the squared norm of the operator. Moreover, we establish several results on the (non-)cocoercivity of the update operators of EG, Optimistic Gradient Method, and Hamiltonian Gradient Method, when the original operator is monotone and Lipschitz.

Citations (60)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube