Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

VieSum: How Robust Are Transformer-based Models on Vietnamese Summarization? (2110.04257v1)

Published 8 Oct 2021 in cs.CL

Abstract: Text summarization is a challenging task within natural language processing that involves text generation from lengthy input sequences. While this task has been widely studied in English, there is very limited research on summarization for Vietnamese text. In this paper, we investigate the robustness of transformer-based encoder-decoder architectures for Vietnamese abstractive summarization. Leveraging transfer learning and self-supervised learning, we validate the performance of the methods on two Vietnamese datasets.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.