Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 422 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Hierarchical Conditional End-to-End ASR with CTC and Multi-Granular Subword Units (2110.04109v2)

Published 8 Oct 2021 in eess.AS and cs.CL

Abstract: In end-to-end automatic speech recognition (ASR), a model is expected to implicitly learn representations suitable for recognizing a word-level sequence. However, the huge abstraction gap between input acoustic signals and output linguistic tokens makes it challenging for a model to learn the representations. In this work, to promote the word-level representation learning in end-to-end ASR, we propose a hierarchical conditional model that is based on connectionist temporal classification (CTC). Our model is trained by auxiliary CTC losses applied to intermediate layers, where the vocabulary size of each target subword sequence is gradually increased as the layer becomes close to the word-level output. Here, we make each level of sequence prediction explicitly conditioned on the previous sequences predicted at lower levels. With the proposed approach, we expect the proposed model to learn the word-level representations effectively by exploiting a hierarchy of linguistic structures. Experimental results on LibriSpeech-{100h, 960h} and TEDLIUM2 demonstrate that the proposed model improves over a standard CTC-based model and other competitive models from prior work. We further analyze the results to confirm the effectiveness of the intended representation learning with our model.

Citations (22)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube