Emergent Mind

Bounds for the Twin-width of Graphs

(2110.03957)
Published Oct 8, 2021 in math.CO and cs.DM

Abstract

Bonnet, Kim, Thomass\'{e}, and Watrigant (2020) introduced the twin-width of a graph. We show that the twin-width of an $n$-vertex graph is less than $(n+\sqrt{n\ln n}+\sqrt{n}+2\ln n)/2$, and the twin-width of an $m$-edge graph for a positive $m$ is less than $\sqrt{3m}+ m{1/4} \sqrt{\ln m} / (4\cdot 3{1/4}) + 3m{1/4} / 2$. Conference graphs of order $n$ (when such graphs exist) have twin-width at least $(n-1)/2$, and we show that Paley graphs achieve this lower bound. We also show that the twin-width of the Erd\H{o}s-R\'{e}nyi random graph $G(n,p)$ with $1/n\leq p=p(n)\leq 1/2$ is larger than $2p(1-p)n - (2\sqrt{2}+\varepsilon)\sqrt{p(1-p)n\ln n}$ asymptotically almost surely for any positive $\varepsilon$. Lastly, we calculate the twin-width of random graphs $G(n,p)$ with $p\leq c/n$ for a constant $c<1$, determining the thresholds at which the twin-width jumps from $0$ to $1$ and from $1$ to $2$.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.