Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Pose Refinement with Joint Optimization of Visual Points and Lines (2110.03940v2)

Published 8 Oct 2021 in cs.CV and cs.RO

Abstract: High-precision camera re-localization technology in a pre-established 3D environment map is the basis for many tasks, such as Augmented Reality, Robotics and Autonomous Driving. The point-based visual re-localization approaches are well-developed in recent decades, but are insufficient in some feature-less cases. In this paper, we design a complete pipeline for camera pose refinement with points and lines, which contains the innovatively designed line extracting CNN named VLSE, the line matching and the pose optimization approaches. We adopt a novel line representation and customize a hybrid convolution block based on the Stacked Hourglass network, to detect accurate and stable line features on images. Then we apply a geometric-based strategy to obtain precise 2D-3D line correspondences using epipolar constraint and reprojection filtering. A following point-line joint cost function is constructed to optimize the camera pose with the initial coarse pose from the pure point-based localization. Sufficient experiments are conducted on open datasets, i.e, line extractor on Wireframe and YorkUrban, localization performance on InLoc duc1 and duc2, to confirm the effectiveness of our point-line joint pose optimization method.

Citations (14)

Summary

We haven't generated a summary for this paper yet.