Pose Refinement with Joint Optimization of Visual Points and Lines (2110.03940v2)
Abstract: High-precision camera re-localization technology in a pre-established 3D environment map is the basis for many tasks, such as Augmented Reality, Robotics and Autonomous Driving. The point-based visual re-localization approaches are well-developed in recent decades, but are insufficient in some feature-less cases. In this paper, we design a complete pipeline for camera pose refinement with points and lines, which contains the innovatively designed line extracting CNN named VLSE, the line matching and the pose optimization approaches. We adopt a novel line representation and customize a hybrid convolution block based on the Stacked Hourglass network, to detect accurate and stable line features on images. Then we apply a geometric-based strategy to obtain precise 2D-3D line correspondences using epipolar constraint and reprojection filtering. A following point-line joint cost function is constructed to optimize the camera pose with the initial coarse pose from the pure point-based localization. Sufficient experiments are conducted on open datasets, i.e, line extractor on Wireframe and YorkUrban, localization performance on InLoc duc1 and duc2, to confirm the effectiveness of our point-line joint pose optimization method.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.