Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An infinite family of antiprimitive cyclic codes supporting Steiner systems $S(3,8, 7^m+1)$ (2110.03881v1)

Published 8 Oct 2021 in cs.IT and math.IT

Abstract: Coding theory and combinatorial $t$-designs have close connections and interesting interplay. One of the major approaches to the construction of combinatorial t-designs is the employment of error-correcting codes. As we all known, some $t$-designs have been constructed with this approach by using certain linear codes in recent years. However, only a few infinite families of cyclic codes holding an infinite family of $3$-designs are reported in the literature. The objective of this paper is to study an infinite family of cyclic codes and determine their parameters. By the parameters of these codes and their dual, some infinite family of $3$-designs are presented and their parameters are also explicitly determined. In particular, the complements of the supports of the minimum weight codewords in the studied cyclic code form a Steiner system. Furthermore, we show that the infinite family of cyclic codes admit $3$-transitive automorphism groups.

Citations (6)

Summary

We haven't generated a summary for this paper yet.