Papers
Topics
Authors
Recent
2000 character limit reached

Self-supervised Speaker Recognition with Loss-gated Learning (2110.03869v3)

Published 8 Oct 2021 in eess.AS and eess.SP

Abstract: In self-supervised learning for speaker recognition, pseudo labels are useful as the supervision signals. It is a known fact that a speaker recognition model doesn't always benefit from pseudo labels due to their unreliability. In this work, we observe that a speaker recognition network tends to model the data with reliable labels faster than those with unreliable labels. This motivates us to study a loss-gated learning (LGL) strategy, which extracts the reliable labels through the fitting ability of the neural network during training. With the proposed LGL, our speaker recognition model obtains a $46.3\%$ performance gain over the system without it. Further, the proposed self-supervised speaker recognition with LGL trained on the VoxCeleb2 dataset without any labels achieves an equal error rate of $1.66\%$ on the VoxCeleb1 original test set. Code has been made available at: https://github.com/TaoRuijie/Loss-Gated-Learning.

Citations (49)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.