Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 82 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 469 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Self-supervised Speaker Recognition with Loss-gated Learning (2110.03869v3)

Published 8 Oct 2021 in eess.AS and eess.SP

Abstract: In self-supervised learning for speaker recognition, pseudo labels are useful as the supervision signals. It is a known fact that a speaker recognition model doesn't always benefit from pseudo labels due to their unreliability. In this work, we observe that a speaker recognition network tends to model the data with reliable labels faster than those with unreliable labels. This motivates us to study a loss-gated learning (LGL) strategy, which extracts the reliable labels through the fitting ability of the neural network during training. With the proposed LGL, our speaker recognition model obtains a $46.3\%$ performance gain over the system without it. Further, the proposed self-supervised speaker recognition with LGL trained on the VoxCeleb2 dataset without any labels achieves an equal error rate of $1.66\%$ on the VoxCeleb1 original test set. Code has been made available at: https://github.com/TaoRuijie/Loss-Gated-Learning.

Citations (49)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.