Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 87 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 156 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Scaling Bayesian Optimization With Game Theory (2110.03790v1)

Published 7 Oct 2021 in cs.LG and stat.ML

Abstract: We introduce the algorithm Bayesian Optimization (BO) with Fictitious Play (BOFiP) for the optimization of high dimensional black box functions. BOFiP decomposes the original, high dimensional, space into several sub-spaces defined by non-overlapping sets of dimensions. These sets are randomly generated at the start of the algorithm, and they form a partition of the dimensions of the original space. BOFiP searches the original space with alternating BO, within sub-spaces, and information exchange among sub-spaces, to update the sub-space function evaluation. The basic idea is to distribute the high dimensional optimization across low dimensional sub-spaces, where each sub-space is a player in an equal interest game. At each iteration, BO produces approximate best replies that update the players belief distribution. The belief update and BO alternate until a stopping condition is met. High dimensional problems are common in real applications, and several contributions in the BO literature have highlighted the difficulty in scaling to high dimensions due to the computational complexity associated to the estimation of the model hyperparameters. Such complexity is exponential in the problem dimension, resulting in substantial loss of performance for most techniques with the increase of the input dimensionality. We compare BOFiP to several state-of-the-art approaches in the field of high dimensional black box optimization. The numerical experiments show the performance over three benchmark objective functions from 20 up to 1000 dimensions. A neural network architecture design problem is tested with 42 up to 911 nodes in 6 up to 92 layers, respectively, resulting into networks with 500 up to 10,000 weights. These sets of experiments empirically show that BOFiP outperforms its competitors, showing consistent performance across different problems and increasing problem dimensionality.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.