Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Isolation of connected graphs (2110.03773v1)

Published 7 Oct 2021 in math.CO and cs.DM

Abstract: For a connected $n$-vertex graph $G$ and a set $\mathcal{F}$ of graphs, let $\iota(G,\mathcal{F})$ denote the size of a smallest set $D$ of vertices of $G$ such that the graph obtained from $G$ by deleting the closed neighbourhood of $D$ contains no graph in $\mathcal{F}$. Let $\mathcal{E}_k$ denote the set of connected graphs that have at least $k$ edges. By a result of Caro and Hansberg, $\iota(G,\mathcal{E}_1) \leq n/3$ if $n \neq 2$ and $G$ is not a $5$-cycle. The author recently showed that if $G$ is not a triangle and $\mathcal{C}$ is the set of cycles, then $\iota(G,\mathcal{C}) \leq n/4$. We improve this result by showing that $\iota(G,\mathcal{E}_3) \leq n/4$ if $G$ is neither a triangle nor a $7$-cycle. Let $r$ be the number of vertices of $G$ that have only one neighbour. We determine a set $\mathcal{S}$ of six graphs such that $\iota(G,\mathcal{E}_2) \leq (4n - r)/14$ if $G$ is not a copy of a member of $\mathcal{S}$. The bounds are sharp.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)