Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 194 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Isolation of connected graphs (2110.03773v1)

Published 7 Oct 2021 in math.CO and cs.DM

Abstract: For a connected $n$-vertex graph $G$ and a set $\mathcal{F}$ of graphs, let $\iota(G,\mathcal{F})$ denote the size of a smallest set $D$ of vertices of $G$ such that the graph obtained from $G$ by deleting the closed neighbourhood of $D$ contains no graph in $\mathcal{F}$. Let $\mathcal{E}_k$ denote the set of connected graphs that have at least $k$ edges. By a result of Caro and Hansberg, $\iota(G,\mathcal{E}_1) \leq n/3$ if $n \neq 2$ and $G$ is not a $5$-cycle. The author recently showed that if $G$ is not a triangle and $\mathcal{C}$ is the set of cycles, then $\iota(G,\mathcal{C}) \leq n/4$. We improve this result by showing that $\iota(G,\mathcal{E}_3) \leq n/4$ if $G$ is neither a triangle nor a $7$-cycle. Let $r$ be the number of vertices of $G$ that have only one neighbour. We determine a set $\mathcal{S}$ of six graphs such that $\iota(G,\mathcal{E}_2) \leq (4n - r)/14$ if $G$ is not a copy of a member of $\mathcal{S}$. The bounds are sharp.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube