Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Explanation as a process: user-centric construction of multi-level and multi-modal explanations (2110.03759v1)

Published 7 Oct 2021 in cs.AI, cs.HC, and cs.LG

Abstract: In the last years, XAI research has mainly been concerned with developing new technical approaches to explain deep learning models. Just recent research has started to acknowledge the need to tailor explanations to different contexts and requirements of stakeholders. Explanations must not only suit developers of models, but also domain experts as well as end users. Thus, in order to satisfy different stakeholders, explanation methods need to be combined. While multi-modal explanations have been used to make model predictions more transparent, less research has focused on treating explanation as a process, where users can ask for information according to the level of understanding gained at a certain point in time. Consequently, an opportunity to explore explanations on different levels of abstraction should be provided besides multi-modal explanations. We present a process-based approach that combines multi-level and multi-modal explanations. The user can ask for textual explanations or visualizations through conversational interaction in a drill-down manner. We use Inductive Logic Programming, an interpretable machine learning approach, to learn a comprehensible model. Further, we present an algorithm that creates an explanatory tree for each example for which a classifier decision is to be explained. The explanatory tree can be navigated by the user to get answers of different levels of detail. We provide a proof-of-concept implementation for concepts induced from a semantic net about living beings.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.