Fast and stable approximation of analytic functions from equispaced samples via polynomial frames (2110.03755v2)
Abstract: We consider approximating analytic functions on the interval $[-1,1]$ from their values at a set of $m+1$ equispaced nodes. A result of Platte, Trefethen & Kuijlaars states that fast and stable approximation from equispaced samples is generally impossible. In particular, any method that converges exponentially fast must also be exponentially ill-conditioned. We prove a positive counterpart to this impossibility' theorem. Our
possibility' theorem shows that there is a well-conditioned method that provides exponential decay of the error down to a finite, but user-controlled tolerance $\epsilon > 0$, which in practice can be chosen close to machine epsilon. The method is known as \textit{polynomial frame} approximation or \textit{polynomial extensions}. It uses algebraic polynomials of degree $n$ on an extended interval $[-\gamma,\gamma]$, $\gamma > 1$, to construct an approximation on $[-1,1]$ via a SVD-regularized least-squares fit. A key step in the proof of our main theorem is a new result on the maximal behaviour of a polynomial of degree $n$ on $[-1,1]$ that is simultaneously bounded by one at a set of $m+1$ equispaced nodes in $[-1,1]$ and $1/\epsilon$ on the extended interval $[-\gamma,\gamma]$. We show that linear oversampling, i.e., $m = c n \log(1/\epsilon) / \sqrt{\gamma2-1}$, is sufficient for uniform boundedness of any such polynomial on $[-1,1]$. This result aside, we also prove an extended impossibility theorem, which shows that such a possibility theorem (and consequently the method of polynomial frame approximation) is essentially optimal.
- Ben Adcock (74 papers)
- Alexei Shadrin (11 papers)