Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 136 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 427 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Magic dust for cross-lingual adaptation of monolingual wav2vec-2.0 (2110.03560v1)

Published 7 Oct 2021 in cs.CL, cs.SD, and eess.AS

Abstract: We propose a simple and effective cross-lingual transfer learning method to adapt monolingual wav2vec-2.0 models for Automatic Speech Recognition (ASR) in resource-scarce languages. We show that a monolingual wav2vec-2.0 is a good few-shot ASR learner in several languages. We improve its performance further via several iterations of Dropout Uncertainty-Driven Self-Training (DUST) by using a moderate-sized unlabeled speech dataset in the target language. A key finding of this work is that the adapted monolingual wav2vec-2.0 achieves similar performance as the topline multilingual XLSR model, which is trained on fifty-three languages, on the target language ASR task.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.