Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Fast learning from label proportions with small bags (2110.03426v4)

Published 7 Oct 2021 in cs.LG

Abstract: In learning from label proportions (LLP), the instances are grouped into bags, and the task is to learn an instance classifier given relative class proportions in training bags. LLP is useful when obtaining individual instance labels is impossible or costly. In this work, we focus on the case of small bags, which allows to design an algorithm that explicitly considers all consistent instance label combinations. In particular, we propose an EM algorithm alternating between optimizing a general neural network instance classifier and incorporating bag-level annotations. Using two different image datasets, we experimentally compare this method with an approach based on normal approximation and two existing LLP methods. The results show that our approach converges faster to a comparable or better solution.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.