Papers
Topics
Authors
Recent
2000 character limit reached

Knowledge Distillation for Neural Transducers from Large Self-Supervised Pre-trained Models (2110.03334v2)

Published 7 Oct 2021 in eess.AS

Abstract: Self-supervised pre-training is an effective approach to leveraging a large amount of unlabelled data to reduce word error rates (WERs) of automatic speech recognition (ASR) systems. Since it is impractical to use large pre-trained models for many real-world ASR applications, it is desirable to have a much smaller model while retaining the performance of the pre-trained model. In this paper, we propose a simple knowledge distillation (KD) loss function for neural transducers that focuses on the one-best path in the output probability lattice under both streaming and non-streaming setups, which allows a small student model to approach the performance of the large pre-trained teacher model. Experiments on the LibriSpeech dataset show that despite being 10 times smaller than the teacher model, the proposed loss results in relative WER reductions (WERRs) of 11.5% and 6.8% on the test-other set for non-streaming and streaming student models compared to the baseline transducers trained without KD using the labelled 100-hour clean data. With an additional 860 hours of unlabelled data for KD, the WERRs increase to 48.2% and 38.5% for non-streaming and streaming students. If LLM shallow fusion is used for producing distillation targets, a further improvement in the student model is observed.

Citations (19)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.