Pointwise Bounds for Distribution Estimation under Communication Constraints (2110.03189v2)
Abstract: We consider the problem of estimating a $d$-dimensional discrete distribution from its samples observed under a $b$-bit communication constraint. In contrast to most previous results that largely focus on the global minimax error, we study the local behavior of the estimation error and provide \emph{pointwise} bounds that depend on the target distribution $p$. In particular, we show that the $\ell_2$ error decays with $O\left(\frac{\lVert p\rVert_{1/2}}{n2b}\vee \frac{1}{n}\right)$ (In this paper, we use $a\vee b$ and $a \wedge b$ to denote $\max(a, b)$ and $\min(a,b)$ respectively.) when $n$ is sufficiently large, hence it is governed by the \emph{half-norm} of $p$ instead of the ambient dimension $d$. For the achievability result, we propose a two-round sequentially interactive estimation scheme that achieves this error rate uniformly over all $p$. Our scheme is based on a novel local refinement idea, where we first use a standard global minimax scheme to localize $p$ and then use the remaining samples to locally refine our estimate. We also develop a new local minimax lower bound with (almost) matching $\ell_2$ error, showing that any interactive scheme must admit a $\Omega\left( \frac{\lVert p \rVert_{{(1+\delta)}/{2}}}{n2b}\right)$ $\ell_2$ error for any $\delta > 0$. The lower bound is derived by first finding the best parametric sub-model containing $p$, and then upper bounding the quantized Fisher information under this model. Our upper and lower bounds together indicate that the $\mathcal{H}{1/2}(p) = \log(\lVert p \rVert{{1}/{2}})$ bits of communication is both sufficient and necessary to achieve the optimal (centralized) performance, where $\mathcal{H}_{{1}/{2}}(p)$ is the R\'enyi entropy of order $2$. Therefore, under the $\ell_2$ loss, the correct measure of the local communication complexity at $p$ is its R\'enyi entropy.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.