Papers
Topics
Authors
Recent
2000 character limit reached

Explaining Deep Reinforcement Learning Agents In The Atari Domain through a Surrogate Model (2110.03184v1)

Published 7 Oct 2021 in cs.LG

Abstract: One major barrier to applications of deep Reinforcement Learning (RL) both inside and outside of games is the lack of explainability. In this paper, we describe a lightweight and effective method to derive explanations for deep RL agents, which we evaluate in the Atari domain. Our method relies on a transformation of the pixel-based input of the RL agent to an interpretable, percept-like input representation. We then train a surrogate model, which is itself interpretable, to replicate the behavior of the target, deep RL agent. Our experiments demonstrate that we can learn an effective surrogate that accurately approximates the underlying decision making of a target agent on a suite of Atari games.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.