Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 131 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Explaining Deep Reinforcement Learning Agents In The Atari Domain through a Surrogate Model (2110.03184v1)

Published 7 Oct 2021 in cs.LG

Abstract: One major barrier to applications of deep Reinforcement Learning (RL) both inside and outside of games is the lack of explainability. In this paper, we describe a lightweight and effective method to derive explanations for deep RL agents, which we evaluate in the Atari domain. Our method relies on a transformation of the pixel-based input of the RL agent to an interpretable, percept-like input representation. We then train a surrogate model, which is itself interpretable, to replicate the behavior of the target, deep RL agent. Our experiments demonstrate that we can learn an effective surrogate that accurately approximates the underlying decision making of a target agent on a suite of Atari games.

Citations (13)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.